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ABSTRACT

Wave reflection by smooth media and resonance of systems with radiation

* damping are instructive examples of a failure of the standard approach to

asymptotics. They are also good examples of a type of exponential asymptotic.

needed for the sciences. Successful modifications of conventional, singular-

perturbation theory have been found for them and show some of the principles

promising wider usefulness. They have led to recent developments in WKB-

connection theory, which are also reported briefly.
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SIGNIFICANCE AND EXPLANATION

Asymptotics plays a big role in science and technology because it is a

form of mathematical analysis designed to produce highly illuminating

results. The last decade has brought a rapidly increasing number of

experiences -- in studies of chemical reactions mechanisms, population

genetics, wave scattering and other matters of quite practical concern --

where subtle issues not accessible to established asymptotic methods turned

out'to be decisive. A few problems of this kind have been solved, but in a

way accessible only to a small circle of specialists.

This article for a book uses two examples to explain to a wider,

mathematically trained audience the typical issues encountered, the main ideas

which have led to their resolution and the changes in the general approach to

asymptotic. which they portend.

One example concerns the common process of wave transmission and

reflection in a stratified medium where, as the wavelength decreases, the

whole issue begins to slip unresolved through the net of the established

mathematical theory. The other, concerns unexpected resonance effects

discovered in quantum chemistry, where understanding and prediction depend on

making the old and the new asymptotics play equal and complementary roles.
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AAVZ REFLECTION AND QUASIRESONANC

R. Z. Meyer

I. Wave Reflection?

We are creatures of habit and when a mathematical theory has enjoyed an initial

success, it tends to develop further under its own steam, without much inquiry whether it

really addresses the questions most seriously at issue. It may be of interest to look here

at two examples from mathematical physics in which it has become apparent recently that

asymptotic analysis has narrowly missed the true questions for a long time.

The first example is embarrassingly simple. When waves travel through a medium, the

main practical questions concern transmission and reflection. More often than not, in

fact, nothing else is observable. The main, classical transmission and reflection effects

arise from boundaries, interfaces, cracks, etc., where a discontinuous change in material

properties provides a reasonable model. Once such effects are understood, attention

wanders to the modulation of the waves during travel through the mdium, which is not

normally a uniform one, but has properties varying continuously from place to place. It is

hard to suppress a feeling that those variations are also a plausible cause of partial wave

reflection and of correspondingly incomplete transmission, but little information on it can

be found in textbooks.

To understand why, it will help to focus attention on the simplest circumstances in

which the salient points stand out clearly. Boundaries and interfaces will be ignored, as

will be processes by which one wave type, e.g. of compression, gradually generates another,

e.g. of shear. The waves will be assumed linear and Fourier-analyzed into individual modes

of frequency w. The material will be assumed 'plane-layered' so that the phase velocity

is a continuous function o(x) of only one Cartesian coordinate x. Plane-wave

propagation in the x-direction is then described by as simple a differential equation as

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The
work was supported partially by the National Science Foundation under Grant
No. MC5-8001960.



d2v/dx2 + (n(x)/6] vlx) - 0 (1)

where

n(x) - co/c(x), C = C0/

in terms of a reference value co of c. Shortwave theory covers, first of all, the case

of small wavelength scale E, but it also tends to concern most of what we normally think

of as waves: if C > 1/3, say, the solutions will not be recognizably waves because their

shape will change too rapidly from place to place for an impression even of the notion of

wave length. The function n(x) describes the medium and has various names, of which the

optical one, "index of refraction", will be used here. Its definition makes it natural to

expect

n(x) > 0 (2)

and this will be assumed. For waves obliquely incident on the layered medium, the

following applies an long as the obliqueness is not too strong for (2); the formation of

caustics is here excluded in the interest of simplicity (but it will be central to the

second example).

A classical definition of transmission and reflection also requires reference to

* clear-cut, unmodulated wave states that can be compared unambiguously. This demands an

assumption that the medium approaches homogeneity far fcom the region of notable

modulation,
~~n(x)* n+ >0 as x*

> 0 as x*-. (3)

There is then no physical loss of generality in assuming also that dn/dx is absolutely

* integrable,

dn/dx e L(R) , (4)

which is sufficiently [Olver 1974] to assure solutions of (1) of asymptotic, pure-wave

character,

v(x) A e as -f n(*)ds

0
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becomes large in magnitude. In turn, this justifies a radiation condition,

v ~ ic/s + r a-ice as

S eA / C an

characterizing the desired solution of (1) as an incident wave of unit amplitude plus a

reflected wave of amplitude Irl on the far left, and a transmitted wave of amplitude

ITI on, but no incident wave from, the far right. When this condition is written as

(v - oiA/C)ei c/€ + r as

v m- A/ "  + T as

then (1) to (5) define numbers T and r, the transmission and reflection coefficients,

respectively.

These two complex numbers carry information on both (real) amplitude and phase, and

rather different analytical considerations attach to these two aspects. Questions relating

to phase will be left aside here to concentrate attention on the amplitudes ITI and

IrJ. They are not independent, the natural assumption of real index of refraction implicit

in (2), (3) entails an energy-conservation principle for (1) expressed by

IrJ2 + jr21 - I . (6)

The wave problem posed by (1) to (5) is entirely classical and virtually everything is

known about its solution COlver 1974] s it exists, is unique, and if the limits (3) are

approached fast enough, can be described to all orders by the WK, aplroximation

n1/2v _ eiC/C I A en + e-iC/C I B en  (7)

0 n 0n

0 0

as C + 0 for fixed 4, and by (2), the approximation is even uniform in C. This ought

to furnish a reliable basis for the calculation of the reflection coefficient, which has

been carried out EChester and Keller 19611 with the following result.

WKB-Corollary 1. If n(x) has k continuous derivatives, except for one finite

jump J of dkn/dxk at xO , and if dPn/dxP is absolutely integrable beyond some compact

interval for 0 4 p 4 k + 1, then

Irl = [2 (x0 )]k'l W e k + o(I k)
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A brief proof is given in the Appendix. The queer aspect of this result is that

Irl is determined by the jump of dkn/dxk, regard-less of any other properties of

n(x), which implies a further conclusion (Schelkunoff 1951]:

MI-Corollary 2. For a smooth index of refraction, with continuous and absolutely

integrable derivatives of all orders, there is no reflection, Ir - 0 to all orders in C.

But, that is puzzling [Mahony 19671 because these theorems place no restriction on the

range of n(x), even n+ and n_ need not be close to each other, and the physical

plausibility of partial reflection appears intuitively more related to the range of

variation of the index of refraction than to its smoothness? Mathematically, the result is

equally paradoxical because a function in the class Ck 1 can be approximated arbitrarily

* closely in any plausible norm by a C -function.

Generations have been tempted to shrug this MI-Paradox off as, perhaps, merely

indicating negligibility of reflection in smooth media. That will not do, however, because

*. inability to calculate reflection implies, by the energy conservation relation (6), that no

meaningful information on transmission is at hand eithert

Mahony [19671 emphasized, moreover, that the WKB-Corollary 2 implies by no means

that Irn is numerically smell even when C is so small that successive term in (7)

decrease rapidly with increasing order. A striking example of Olver (1964] illustrating

that may, perhaps, be worth quoting at every conference on asymptotics: For large n, the

integral

I(n) f ct

2t

has the (rigorous) asymptotic expansion

I(n) ~2t-J1 - + - +
n n n

in which all the coefficients A differ little from unity. Since the expansion marches

in powers of n 2 , successive terms get rapidly smaller and, e.g.,

-4-
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z(10) - -0.0005271...

with the third and all further terms contributing loes than the last digit quoted. Direct

computation, however, gives

Z(O) "-0.0004558...

The error of the expansion therefore exceeds 16% even at n - 10, where the expansion had

such excellent appearance. Olver (1964] points out that this error is closely accounted

for by the term

1 W.-n

in I(n), which is technically negligible in comparison with all terms in the expansion,

but actually exceeds even %,/n4 at n - 10.

In the somewhat larger context of this Section, the WKB-paradox provides a healthy

comment on a contemporary tendency to consider a problem solved when a close, approximate

solution of the pertinent differential equation and boundary conditions has been

obtained. For the simple, classical problem just described, we have long known everything

about the solution, but almost nothing, about reflection and transmission. The solution

v(x), however, cannot usually be observed inside the medium and it has signally failed to

point the way towards predicting what can be observed.

-5-



11. Central Scattering

One of the earliest and simplest problems of quantum mechanics, which also has

classical analogues in many sciences, concerns the motion of a particle in the field of a

spherically symmetrical potential U(r). its stationary states are described (e.g. Landau

and Lifshitz 19741 by Schroedingr's equation,

412
Av + [Z - U(r)]Y - 0

for the wave function Y(xyz)e-t where a is the mass and 3, the energy. It is

traditional to split the angular momentum off by the help of spherical harmonics YLm so

that Y - rl(r)y and * satisfies a radial Schroodinger equation,

ft2 d2t + (Z - u (r)l* 0 (8)

with 'centrifugally corrected' potential

Ut(r) - U(r) + 4121(1 + 1)/(-2) (9)

whore A is the quantum number of the total angular momentum.

fA comon type of potential of particular physical and chemical interest is

characterised by a central singularity of Coulomb type (Kramers 19261, so that

r1(r) * -U* < 0 as r + 0 , (10)

and by a maximm U. of U(r) at r - r., say (Fig. 1), whence O(r) falls to a finite

value as r * -, which ay be chosen as U - 0. In physical parlance, this class of

potentials is defined by the feature of a central well surrounded by a potential barrier

(Fig. 1). it ts well known [Landau end Lifshitz 19741 that bound states of energy 9 < 0

may then exist in the well, which are eigenfunctions of (8) for eigenvalues of R and

generate resonance in scattering processes. For positive energy, however, the effect of

tunneling precludes bound states because the leakage of probability through the barrier

implies that any eigenfunction would have to decay in time. Indeed, it is not hard to

deduce rigorously from the quantum principle of conservation of total probability for

Schroedinger's equation that no real eigenvalue Z > 0 can exist for a potential of this

type [Landau and Lifshitz 19741 and therefore, no resonance can occur at positive energy.

-6-



Uf
U,

r

r rM  r 2  r

Fig. 1

In the last decades, however, careful scattering experiments have led to the

observation of the highest and sharpest resonance spikes precisely for positive energiesl

The basic explanation of such Iquasiremonant' observations is not difficult: the leakage

of probability through the barrier implies radiation damping and therefore, any solutions

of Schroedinger's equation in the tunneling range must decay in time. In the notation just

sketched, they must therefore have complex values of 2, and the characteristic decay

time,

T = - /lIE (II)

is called the life of the solution. The tunneling is no one-way street, however, and as

outward tunneling leads to radiation damping, so inward tunneling will produce a radiation

excitation. The standard measure of such excitation is called .response and is defined an

follows. The generation of stationary states in the tunneling range requires a supply of

radiation from infinity to compensate for the unavoidable radiation damping, and the

'response' is the ratio of the stationary-state amplitude in the well to the supply

-7-



amplitude needed to maintain the stationary solution. (Of course, these amplitudes are

defined in a mean-square sense because the local amplitude of Y varies from point to

point.) It is no great surprise to find, when these notions are expressed more

quantitatively [e.g. Longuet-Higgins 1967] that the response is directly proportional to

the life T. In normal scattering experiments, accordingly, solutions of short life will

* barely show up, but solutions of long life may be very strongly excited. The key problem

for the physicist and chemist is therefore the prediction of the life (11) for those

solutions which have a very long life.

Now, this tunneling effect is precisely the mathematical problem for which WKB or

turning-point theory was first developed by Kramers [1926], Zwaan (1929] and Langer [1931]

and then greatly perfected by many others [Olver 1974, 1978]. It achieved the formidable

objective of tracing the solution which is exponentially small in the tunnel reliably

through the shadow of the solution which is there exponentially large in the parameter

41. The result is an asymptotic expansion of the eigencondition in powers of

k-2- 2/(2 m ) , (12)

whence an asymptotic expansion
ek-2s

" e (13)

of the eigenvalues can be deduced, and the problem appears solved.

The theory has indeed been successful for inelastic scattering, both in the quantum-

mechanical and a classical context [Meyer and Painter 19791, at least as far as the

determination of e0  in (13) is concerned. A closer look at the fine print of the

* theorems [Evgrafov and Fedoryuk 1966, Olver 1974] reveals technical difficulties [Lozano

and Meyer 1976], impeding the determination of e5  for s 0 1. In any case, however, !Lt

has been shown [Lozano and Meyer 1976, Meyer and Lozano 1983] that, for elastic scattering,

every coefficient e5  in (13) is reall It follows immediately from (13) and (11) that the

4theory then yields no information at all on Im 3, on the life T, on the response and on

the degree of quasiresonant excitation.

| -8-
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Of course, if the interpretation of this result turned out to be, in a manner similar

to the indications for wave reflection in the preceding Section, that Im E is

'transcendentally small', Im E - 0 to all orders in k "2, then it would be natural that

all as in (13) are real. it would also mean, however, that the life T and the response

to excitation are transcendentally largel The sigenvalues of imaginary part so negligibly

small as to fall through even the fine meshes of turning point thaory would be precisely

the oigenvalues of the greatest interest.

If a brief comment on the lessons of these two examples be permitted, it appears that

the WK-expansions of the respective solutions v(x) and Cr) for them may be the

correct answer to the wrong question?

The Author's experience, in fact, has been that it is not very rare that asymptotic

expansions are of relatively little value outside of mathematics. That is not real heresy,

because the basic concept of asymptotics is that of approximation, and if the asymptotic

property of a first approximation be proven, then its validity and value depend in no way

on approximatiQns of higher order.

From the point of view of mathematical physics, the comment may also be relevant that,

more often than not, the solutions of the differential equations are not themselves very

observable. This is canonical in quantum mechanics and a closer look at experiment and

field observation in a number of sciences indicates that it extends quite far into

classical physics. The main observables tend to be quantities of the type of scattering

coefficients or resonances, and the two examples indicate that it is not entirely

exceptional to find that their prediction requires approximations to both asymptotic

quantities of algebraic type (i.e., powers) and of transcendental type (e.g.,

exponentials).

-9-



11. Wave Reflection

The two examples just sketched were among the earlier ones of an increasing number of

physical and biological problems encountered in the last decade in which asymptotics of

- exponential precision was found mandatory. It may therefore be of interest to sketch now

' the salient points of approaches that proved effective for them. The analysis of wave

reflection, in particular, has reached remarkable simplicity and a more general

significance of its ideas is indicated by the surprising success with which it has been

extended to arbitrarily nonlinear modulation (Meyer 1976a] at the instance of the adiabatic

invariance of the magnetic moment in plasma physics.

Of two main steps by which the reflection coefficient Ir of Section I can be

obtained, the first consists in no more than the observation that Irl is a number, which

*must be a functional of the solution v(x) of (1) to (5), and a suitable representation of

this functional should be helpful.

The radiation condition (5) indicates that the natural variable for modulation is the

'" Liouville-Green variable

1
f n(s)ds (14)
0

which measures distance in units of local wave length and is an analog of Hamilton's

'angle'. When the unknown v in (1) is regarded as a function v(C), that equation

* 'becomes

d 2v/dC
2 + 2f(C)dv/dC + C " 2 v - 0

f( - n- 2 dn/dx (

2

and the reflection coefficient Irl must be a functional of this modulation function f,

which is seen to characterize the problem (15), (5) completely.

A representation of that functional has been obtained by many authors in a variety of

ways, of which two samples are quoted in [Meyer 19801. A simple form of it states that the

magnitude, even if not the phase, of r is the same as that of

-10-



a+ -+ ([a(C)]2 ) ) fl(0 (16)

where a(C) is an auxiliary function defined by the Riccati equation of (1),

da/d - Aa + (a2 - 1)f, a(-) - 0 . (17)

EThe WKB-Corollary I of Section I follows (Appendix) from (16), (17) by the stationary

phase rules for Fourier transforms without reference to the WKB-representation of v or to

details of a(M).] As a pointer to the motivation for (16), it may be noted that an

integral equation associated in a simple and obvious way with (17) in

a() -f ((a()]
2  

1)e-2is/f(S)ds (1S)

Like dn/dx, moreover, f(C) e L(), by (2), (3), (14) and (15), and what questions may

attach to the integrals in (16), (18) therefore tend to be not questions of convergence.

Since (17) indicates a() to be small -- in fact, it is readily proven to be 0()

-- a common approach to the functional (16) has been to iterate by the help of (17) or

(18), starting with a(R) - 0, so that a first approximation to (16) becomes

- f e(1 /f(~)dC . (19)

That is tricky, however, because the contributions from the oscillatory integrand cancel in

this Fourier integral with large parameter I/C to an extent making the integral smaller

2than the conjectured error 0(C ), indeed, smaller than any power of E when f() is

smooth and decays well at w. The other integral in (16),

f 20-iEf1 dt

turns out similarly to be much smaller than O(2), and in the end, a correct execution of

this approach yields no more than Corollary 2 of Section 1, because the functional (16)

-11-



possesses the favorable property of Fourier integrals to such an excessive degree that one

is tempted to speak of cancellation sickness.

This diagnosis of the technical root of the WKB-paradox indicates the possibility of

an easy cure by the second main step: complex embedding. To this end, it is assumed now

that the index of refraction, n(x), is analytic. Lest this appear a drastic restriction,

it may be observed that n(x) represents the properties of the medium and must be

specified, if not by speculation, then from measurements, which could not support a

distinction between analytic and non-analytic functions. A further justification emerges

from work on a related functional (Meyer and Guay 1974, Stengle 19771 which indicates the

effective approach to non-analytic, smooth functions n(x) to be their approximation by

analytic functions.

When n(x) is analytic, the same follows from f(C) from (14) and (15), and for

a(g), from (17) or (18). A rational approach, in fact, is to start from the hypothesis

that f(C) is analytic on a neighborhood of the real 9-axis of positive minimum width.

This demands an extension of the radiation condition (5) to the analytic strip of f(C)l a

formulation is found in [Meyer 19751 and permits shifting the path of integration in (16)

from the real C-axis to a parallel path in the lower half-plane. On the new path,

*' Im 4 - const. - -k, the offending factor exp(-2iC/C) in the integrand has very small

magnitude Iexp(-2iC/C )J - exp(-2k/e), and by pulling this constant factor out of the

integral, the cancellations are made explicit.

This cure will be clearly improved by increasing k as far as possible, i.e., by

shifting the path down until it encounters the first singularity of f() (Fig. 2). For

simplicity, only one such singular point, 9 - Cc# will be envisaged here (any finite
!c

number of them turn out (Meyer 19751 to make additive contributions to reflection). Figure

2 prompts a conjecture that a principle of stationary phase might apply to the integral

(16) on this path, that is, the contributions from the long, straight path segments might

be of minor importance. This is the first point where the analysis calls for some work:

Simple, contractive estimates on (18) (Meyer 19751 show the conjecture to hold, the major

-12-
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contribution to reflection arises just from the path indentation at C - C (Fig. 2), if

that contribution is of order exp(2 Im c /C) as C * 0, as one would anticipate.

i i m

cc

•Re

Fig. 2

Observe how the scene has changed, the functional (16) related to reflection is

revealed as a local property of the singularity of f(g) nearest to the real C-axis.

(This also explains why knowledge of the WB-solution (7) of (1) at real x has not been

relevant or helpful in the present context.)

The contribution of the indentation to (16) is seen from (18) to be just the jump of

a( )exp(-2i4/C) across Cc# so that the remaining piece of the problem is a local Wfl-

connection. Its solution is needed to confirm the principle of stationary phase for (16),

but since the cancellations are already fully explicit, it is needed only to a first

4 approximation. The solution [Langer 1931] has been extended to a very large class of

!- singularities in (Painter and Meyer 1982, Meyer and Painter 1983]. The result of the local

computation (Meyer 1975, 1976] is

-13-
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Inl - II - 2 a CO(W) + 0 (07/e) , (20)

where a - -In Fc (Fig. 2) and the less important parameter M is related to the branch

structure of f at C . The transmission coefficient ITI in then given by (6).C

The main feature of reflection is now seen to be the cancellation factor exp(-2a/C)

in (20), in vhich m/c may be called the 'wave number characteristic of reflection'. The

key parameter a - Jim c I is the halfwidth of the analytic strip of f(C) and, contrary

to intuitive expectations, reflection is now seen not to be closely related to either the

range of variation of the index of refraction or to its maximal rate of variation. Though

clearly fundamental, the width of the analytic strip is a subtle property of a function.

kn interpretation [Stengle 19773 that remains applicable well beyond the class of analytic

functions is that m characterizes the growth, as p * -D of the L-norm IdPn/dxPE of

high-order derivatives as function of the order p of differentiation.4
If the index of refraction n(x) be specified by speculation, a and v in (20)

o are, of course, readily read off (14) and (15) (Meyer 1979]. If the index be obtained from

measurement, however, the determination of a to a close approximation may pose a problem

(and that of is, may thereby be made moot). That this difficulty is peculiar to very

short wavelengths is suggested by a different approach to wave reflection [Gray 19821 which

* accepts the restriction c 01 fI < I on the modulation function in order to solve (15),
d2y/dE 2 + e-2 v - -2E(C)dv/2

for fixed C by contraction with the simple, lefthand resolvent. In particular, a power

series in I fl usually provides an effective algorithm for reflection, as long as the

phase velocity c(x) (Section I) varies fairly slowly. The first term in the series for

2(16) is then Indeed (19) and the remainder is smaller by a factor If I . Under normal

circumstances, when the frequency is not all that high and the variation of the index of

refraction, not exceptional, reflection therefore appears to be more robust than the

shortwave result might suggest.

-14-
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IV. Quasiresonance

The central scattering problem of Section I is technically harder and has not yet

received a treatment of comparable simplicity, but a sketch of the main notions and

principles by which it was solved [Lozano and Meyer 1976, Meyer and Lozano 1983] may also

be of interest. The discussion of Section 11 has served mainly to clarify that the

Important, quasiresonant states are those of long life (11) and that this mandates a search

for eigenvalues 3 of nonzero, but extremely small, imaginary part. So small, indeed,

that it could not be pinpointed with any conviction without rigorous proof of their

eListence.

Since the potential U(r) is real at real radius r, it follows from (9) that the

roots of - Ut(r) must also be slightly complex, and since those are the crucial turning

points of the Schroedinger equation (8), it becomes clear that an analysis in two complex

variables, Z and r is required, in combination with asymptotics in the real parameter

41. All experience to-date suggests that it may be a principle of transcendental-precision

asymptotics that success depends on avoidance of premature approximation. Once adequate

conviction has been attained that a quantity Is well-defined, then it can be given a name

and the further progress of the analysis need not be impeded by the question of how the

quantitative content of this name might be calculated. Indeed, it is likely to become

clear only at a quite advanced stage of the analysis which quantities really need to be

computed, and to what accuracy. For quasiresonance, in particular, success was first

achieved by conducting the analysis in the two complex variables exactly, if somewhat

abstractly, and by postponing approximation with respect to A to the very end. This also

serves simplicity by avoidance of entanglement with the details and error estimates of

approximation.

The first step should clearly be to formulate the eigenvalue problem. The governing

eqution (8) can be made non-dimensional by measuring energy and potential in units of

maxrOU(r) = Um - U(rm)

(Fig. 1) and distance, in units of rm . It then becomes

*"+ k2( -U,)*(r) - 0, U, -1U(r) + t(J. + 1)/(kr) 2 
, (21)

-15-



where the large wave number scale k is given by (12),

k - (2MU M) 2r./j•

For quasiresonance, attention may now be restricted to angular momenta for which

29(t + 1)/k 2 < max(r3dU/dr), so that UtYr) also possesses a well (Fig. 1), to energies

in the tunneling range, 0 C Re Z C 1, and to wave functions satisfying a radiation

condition that the wave be purely outgoing at sufficiently large J rl.

Next, the potential U(r) needs extension into the complex plane of the radius r,

and the reasons mentioned in Section III justify again a restriction to analytic

potentials. More precisely, U(r) is assumed analytic on an arbitrarily narrow

neighborhood N of (0,1), beyond which it may be left undefined. For a clear

formulation of the radiation condition, however, N is assumed 'sectorial': for all

sufficiently large Inr, it is to include an interval of larg ri of positive length.

1 0 r2

rr

Fig. 3. Turning points and Stokes lines in

the complex plane of the radius r.
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Figure 3 shows the structure of the r-plane for small Im z < 0 (as it will turn out

to be, fortunately, because the analysis has no right to assume its sign). There are three

near-real roots re of z - U (r): two are plain from Fig. I and the third, r0 , lies

closer to the origin, where the centrifugal correction M + 1)/(kr) 2 over-powers the

Coulomb singularity (10). The figure also shows the Stokes lines Li of (21) on which

r 1/2
Re f EZ - UI(t)] dt - 0, a - 0,1 or 2

r
a

and of which three issue from each of the simple roots ra (except for I - 0, which will

be ignored for a while, for brevity). The WKB-theorem [vgrafov and Fedoryuk 1966, Olver

1974] associates with each Stokes line Li a pair of fundamental solutions ui(r), vi(r)

of (21) which have on Li the character of pure progressive waves, undamped and un-

amplified with distance from r5 . Let ui denote the wave outgoing from re along Li

and vi, the incident wave. Both are exact solutions of (21) on all of N, but do not

possess the pure wave character on Lj for I * i.

The far-field Stokes line L. (Fig. 3) lies close to the real axis and remains in

U, which permits a precise formulation of the radiation condition that no incoming wave be

present at "s the representation

*(r) - wu.(r) + Bov.(r) (22)

of the wave function as a linear combination of u,v o  must satisfy

B. - 0, A. 0 (23)

The final condition for elastic scattering is that the wave function T (Section II) must

be .,euare-integrable and the same follows for t(r). This is effectively a regularity

condition at the singular point r - 0 (Fig. 1), which will emerge to be interpretable in

terms of the 'reflection coefficient'

A0 /B 0 - R (24)

in the central wave-representation

*(r) - AoUo(r) + Bovo(r) (25)

of the wave function.

-17-



Since the fundamental pairs are exact solutions, they must be linearily related, and

- since (22), (25) represent the same, exact solution #(r), it follows that the amplitude

coefficients must also be linearliy related,

B. O

with a 'scattering' matrix S- ((Sij)) independent of r. By (23), (24), the exact

eigencondition is therefore

0- /0 322 + S21 A0/Bo (26)

- 822 + S21 R

* The search for eigenvalues is now seen to involve, not the approximation of the wave

* function, but the 'connection' question of how fundamental pairs are related.

Schroedinger's equation enters into observable matters only through the three coefficients

in (26), and the only concern is how those depend on Z and U(r) when k is large, but

fixed. The formulation chosen reflects hindsight that this question demands rather

different considerations for the singularity at r - 0, when the angular fomentum Z is

bounded independently of k, and for the scattering process away from r - 0, which is

quasiclassical.

The computation of the scattering matrix is precisely the objective of turning-point

connection theory, which has established several methods for it, all leading to

,.~ S2 i + C s(R)k's
0 21 a

(27)

2
Y 0 S2 2  exp-2ki 0 ]Jl + I da()k -2

1

as k +*, where Y 0 0 is irrelevant to (26) and 0 is a familiar WKS-distance

* specified in (30) below. A definite algorithm for c s and d s has been established only

* under unrealistic restrictions on the potential [Zvgrafov and Fedoryuk 1966], but in any

case, (27) only supports (13) and hence, cannot yield any information at all on the life of

* ' for elastic scattering. Lozano and Meyer (19761 therefore recalculated S21 and

: -18-
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S22 more exactly, since Olver's [1978] magnificent 'central-connection' formulation was

not yet public at the time of their struggle, they used the 'lateral-connection' approach

[vgrafov and Fedoryuk 1966] in combination with the principle of conservation of

probability. This makes z - U, in (21) real when 3 and r are real, and permits

defining some of the wave pairs ui,vi with a complex-conjuugate symetry in the planes

of R and r, which is inherited by some of their functionals. Z - UW(r) is obviously

analytic in 3, moreover, and suitable functionals inherit that also. By tracing this

analyticity and symetry painstakingly through the turning-point analysis, Lozano and Meyer

[1976] proved the following result.

* - Precision-Scattering Theorem. For potentials of the type described, the scattering

coefficients in (26) can be represented exactly in the form

• 
- 2k 1

Y 0 S2 1  i expjfiZ 1 (,k)/kj - 1 + i)(1 + (Z,k)/k)e , (28)

Y 022= e 0  exp{iZ2 l(,k)/k) , (29)

with

C 0(1 k) - f [F 0 (r)]/2 dr , (30)
r r0

F -Ugrl -

r 2

(lK) - -f [Fl(r) 1 1 /2 dr , (31)

(where the subscripts on F denote an appropriate determination of branches of the root)

and with Y * 0, Z (9,k) analytic in a and real for real Z, and Z and 2(E,k)

bounded as k +

The crucial, new feature is here the term in (28) with factor exp(-2k), which is

exponentially small because C turns out to be real positive when 3 is real. Such a
* I

term would be meaningless in (27), but the additional information on F shows the first
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term in YoS to be of exactly unit magnitude. The very small term therefore describes

at real R the difference between IY S I and unity, regardless of the much larger
0 21

uncertainty about arg(Y S ). It is precisely this exponentially small term in (28) which
0 21

will emerge as the source of all the information on the life T, and this illuminates how

the standard, technical meaning of larger and smaller in asymptotics can be misleading.

So, it is the principle of conservation of probability which generates the symmetry on

which exponential precision in shortwave scattering can be founded. (In classical

* "scattering [Lozano and Meyer 1976], conservation of energy plays an analogous role.)

For short waves, the most prominent quantities in the Theorem are the WKS-integrals

(30), (31). An appropriate determination of branches of ,1/2 has been worked out by

4 Lozano and Meyer [1976] and shows k&0exp[-i0/2) and k 1 to be real positive at real
01

energy R. The former may therefore be interpreted as the width of the potential well of

U*1(r) in (21) at the level E in units of local, radial wavelength. Were not the

potential barrier just the place where there are no waves, kC1  would be similarly

interpretable as the potential-barrier width of U, in such units.

This leaves the reflection coefficient R in the eigencondition (26) to be analyzed,

and Meyer and Lozano (1983) have treated the case where the angular momentum I is

fsmall', i.e., bounded independently of the wave number scale k, and the case where I

-.* is so large that i/k + limit > 0 as k * me The latter case is quasiclassical, the third

turning point, r0 , is a simple one, near which the solution of (21) is close to an Airy

function, the condition of square integrability picks out the correct Airy function, and

the well-known solution [Kramers 1926, Olver 1974] of the WKB-connection problem for such a

simple turning point yields

R - • -iW/2 + O(k-1

Unfortunately, this result is again inadequate for information on the life T because

its degree of accuracy destroys the chance of using the new information of the Precision

- Scattering Theorem meaningfully in the sigencondition (26). Nor would further terms in the

*asymptotic expansion of R help in that respect. But, Lozano and Meyer [1976] pointed out

* that the principle of conservation of probability for (21) permits normalization of the
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fundamental pair u0 ,v 0 in (25) so that

VW U(r)

at real Z, and since it also makes the wave function 4 real at real Z and r, all

the unknown error terms must be arrangeable in complex-conjugate pairs, whence they deduce

that IRI - 1 exactly at real energy. The analyticity in 5 then implies an exact

representation

R - e'/exp[k E0 (B,k)] (32)

with Z0 again analytic in 3, bounded as X + *, and real for real S.

The case of small angular momentum is more complicated because r0 then moves to

within O(k 2 ) of the central, singular point r - 0 of (21), and that singularity now

over-shadows the embryonic turning-point structure at r0 . Fortunately, a great deal is

known about this Mulmb-singularity (Kramors 1926, Olver 1974] and the connection results

for it have been extended to a large class of other singularities by Painter and Meyer

[1982] and Meyer and Painter (1983]. For sufficiently small Irn, the solutions of (21)

are close to Bessel funtion., of which the squaro-integrability condition picks the

correct one, and a sufftciently careful comparison ith (25) Ilramers 1976, meyer and

Lozano 19831 yields

R - e-iw( 1/2+0) + 0( /2)

with

+ + 1)]1/2(33)

This is again inadequate for information on the life, but the same probability-conservation'

argument as for the case of large angular momentum shows that there must be an exact

representation

R - eu"i ( 1/2+u)explik'1/20E (3k)] (34)0'
with another function E of the same properties as in (32).

This result extends to I - 0, if the assumption [Landau and Lifshitz 1974]

(O) - 0 is added for that case, and the angular-momentum correction (33) to the phase

shift of central reflection is then massive. For t 1, however, it is quite small and

decreases with increasing A, and (34) recovers (32) when . - O(k).
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One cannot help feeling that all these technicalities are more complicated than they

* ought to be and, while hard analysis is surely unavoidable, somebody might be able to

straighten it out drastically by the help of just the right integral equation for (21)? In

* any case, the results at hand are sufficient for an exponentially precise evaluation of the

eigencondition. When (26), (29) and (34) are substituted in (26), it in natural to split

the characteristic form of (26),

A(ZEk) - S22 + 821 R

into a term collecting all the functions whence asymptotic contribu-tions of algebraic type

in k- 1 are to be anticipated and another term that is exponentially small in k:

A(Z,k) - iY 1 R (A (2,k) + Al(Wk)) , (35)0 0

hA0  exp(-2k + 23ia + iye/k - iE 0 /k1 " 2 ] + exp(iZ 1/k) ,(36)

0 1p,:a 1 , Ui - M)( + 0/k)exp(-2kg I ) . (37)

To establish now those elusive eigenvalues 3 responsible for quasiresonance, it is

convenient to begin with the real roots 
t r of A0 . Since the appropriate branch in (30)

Smakes %0(Zk) = il0l1 for real Z, it follows straightaway from (36) that those roots are

given by

klC (3 ,k)l + (E - E + k/ )/(2) - (n + - + 0)w (38)
0Or" I 2 02

which is just the nondimensional form of the quasiclassical quantization rule ignoring the

radiation damping [Kramer. 1926, Keller 1958], with Kramers' (1926] angular-momentum

correction 0. The new feature that it is an exact version of the quantization rule is not

of much direct help, because no practical algorithm for the evaluation of the E has been

worked out. The feature of immediate relevance is that, since U(r) is monotone

increasing on (Orm) (Fig. 1), this quantization rule is known to determine a unique,

* real Kr(n) for large k and given integer n such that still *r(n) < Um.

The analyticity in Z now permits application of the principle of the argument

[lozano and Meyer 1976] to prove existence of a unique, simple root En of A close to

Zr(n) for all sufficiently large k and n. It then follows immediately that, to a first

approximation as k ,
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9n Rrn) '"lrtkl/*ok)
1 -1

- I i)[kIlZrk)I] -exp[-2kC,(-Ck)] (39)

where

l(Er k) -I ii/2 f 1'r " Ut(r) 1 1 2dr 0 0 • (40)
t0

The real part of (39) has little direct meaning, but the Imaginary part gives the first

approximation to the life (11). in the original, dimensional notation of Section ii, it is

Tn ~ 18*/unl' /21 CO(Zrl(n),k) I exp[leWa ) 1/2C 11(Zrl(n) ,k)/ A] 141)

which confirms the conjecture (Section 11) that elastic scattering generates sigenfunctions

of a life exponentially large in ft. It also show that the computation of such lives

requires no more than evaluation of the two definite integrals (31), (40) of typical WKU-

type# once the real part, Zr(n), of the eigenvalue En has been determined from the

quantization rule.
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V. Reforms?

The objective of Sections I and II was to explain scientific reasons for attention to

some modern questions attaching to old and elementary, linear mathematics. one problem, at

. least, of fully non-linear oscillator modulation [Meyer 1976a] has greatly reinforced those

reasons. Now that initial answers to such high-precision questions have been sketched in

., Sections III and IV, one wonders about lessons of more general significance that might be

drawn from them beyond those noted in the preceding Sections, namely relative unimportance

of asymptotic expansion, but importance of complex embedding and of postponement of

approximation.

One indication that has impressed the Author is that the conventional comparison

between those asymptotic contributions which are algebraically small and those, which are

transcendentally small, can miss the point. Quasiresonance furnishes a particularly good

example, for the answer to one of its two key questions, viz. the eigenfrequency, depends

entirely on asymptotics of algebraic type, while that to the other key question, viz. the

resonant excitation, depends entirely on asymptotics of exponential type. There are

occasions, then, on which a more fruitful view of the distinction between 'algebraically

small' and 'transcendentally small' may be that this distinction is qualitative more than

quantitative.

A second experience which has impressed the Author is that the regi observablee, in

both examples, can be identified with local properties of singular points of the

differential eguations. (In quasiresonance, most of the points in question are turning

points, but the conventional distinction between those and singularities is all too

superficial, in any case; it disappears in any intrinsic formulation, such as (15).) It

would appear natural to see a more general significance in that experience, once a complex

domain for the equations is envisaged.

In regard to wave modulation and scattering, it would also appear significant that the

real concern of all the hard analysis, in both examples, was not with the approximation of

the solutions of the differential equations, but with the connection of wave amplitudes

across the singular points of primary relevance to the problem. It cannot fail to obtrude
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during the technical work, as will surely have become clear between the lines cf Section

IV, that the present form of connection theory is laborious, largely because it involves so

much detail. The final results, on the other hand, do not really substantiate the need for

all the detail, which has greatly discouraged acquaintance with this branch of asymptotics

and thereby made it the preserve of a rather small circle of specialists. Does it deserve

the discredit or could it be reformed to the wider benefit of asymptotics?

Turning-point theory is also not very general, even the great monograph [Olver 1974]

treats only the simplest types of transition points. Physics motivates such a restriction

in the example of quasiresonance, but not, in that of wave reflection. The index of

refraction of a medium is not ours to choose, but ours to accept as we find it. Since its

singular points dominating reflection lie well off the real axis of distance, physics

places scant restrictions on their structure. There is no good reason why they should

belong even to the class of 'fractional transition points' [Langer 1931, Olver 1977].

Accordingly, the mathematical principle of generalization might here be helpful by

mandating abandonment of detail and thereby promoting simplicity and a chance for guidance

towards the nucleus of connection and scattering. Such an attempt has been prompted by the

work sketched in Sections 111, IV, and it may be worth closing this article with a brief

sketch of the results and experiences to which it has led.

On present evidence, the overriding lesson seems to be that wave-amplitude connection

may be characterized as an asymptotic expression of the branch structure of the singular

point COlver 1974, Meyer and Painter 1983].

To carry this lesson from regular points of differential equations [Olver 1974] beyond

the realm where detail is accessible, Meyer and Painter [1983a) studied the branch

structure of almost the whole class of irregular points of linear, physical wave- or

oscillator-modulation equations. In contrast to all the earlier work on isolated singular

points, the new study focuses on 'very irregular' points which are branch points of

arbitrary structure. The large class of equations admitted is such that each singular

point can be linked by a diffeomorphism to a regular point of the same differential
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equation. This led them to 'irregularity bounds' on the quantitative degree of homotopic

deformation of regular solution structure as the diffeomorphism is traced to an irregular

point.

An incidental discovery (for them, if not perhaps for every Reader) was that the

independent variable in (1) or (20) plays two quite different roles in the local solution

structure near the singular point. More precisely, this applies to the natural variable

in (14), which plays the role of a modulation variable, while C/s plays the role of

an oscillation variable. of course, this recalls immediately the notion of slow time and

fast time in mltiscale asymptotics. The surprise was the discovery of it in an analysis

having nothing to do with asymptoticsa Meyer and Painter' [1983a] study the 'parameter-

less' case of the theory of differential equations, in which C - 1, without lose of

generality. The two variables, moreover, played completely different roles, not in the

asymptotic solution structure (which their investigation left undefined), but in the local

structure at the singular point. It would appear that the multiscale notion is anchored

much more deeply in the singularity-structure of a class of differential equations than had

been realized widely.

The reason for this foray into pure mathematics was the conjecture that., even in the

more general context, connection is an asymptotic expression of local branch structure.

Accordingly, an adequate representation of local structure should suffice for asymptotic

connection of wave amplitudes, and some of the central concepts of present turning-point

theory might be irrelevant to that purpose? indeed, the new theory gives up both the ideas

of comparison equation and of uniform approximation. The reason is that the class of

fractional transition points stands in one-one correspondence (Langer 1931] to the class of

Bessel functions. Once more general singular points are admitted, uniform approximations

of similar usefulness cannot exist. That is a pity, for sure, but is unavoidable and

eliminates temptation of detail. The comparison equation loses its usefulness similarly.

Instead, there is the new idea of a diffeomorphism from regular to irregular points of the

same differential equation.

-26-
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But, how in asymptotic connection to be deduced from knowledge of no more than local

structure at the singular point? Meyer and Painter [1983] show that the two-variable

structure can provide the key. They use the 'irregularity bounds' on the extent of

departure of irregular-point structure from regular-point structure to prove that the two-

variable nature of the solutions assures distances from the singular point at which local

structure has not yet been lost, but asymptotic structure in already present. In effect, a

typical boundary-layer concept has surfaced suddenly: those bounds document 'overlap'

between the domains of local and asymptotic approximation, and it is no great surprise that

the asymptotic connection formulae then follow immediately from the local branch structure.
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F.

Appendix

For a brief proof of Chester and Keller's [1961] WKB-Corollary 1 (Section I), it is

again beat to ignore the WXB-representation of the solution v(x) of (1) and to start from

(16), of which a brief proof is found, e.g., in [Meyer 1975]. From (14) and (15),

dPf/dp - 2 n-p - 2 dp"1n/dxp+l + ..

where dots denote terms involving only derivatives of lover order than those displayed, so

that
k- k I Inxo )k-1

where [0] denotes the jump of # at x0, [0] O(x + 0) - #(x - 0). Since
0, 0)

f(C) e L(R), it follows from (17) or (18) that a(C) exists [e.g., Coddington and

Levinson 1955], is bounded, in fact, is O(1), and has one more continuous derivative than

f(C) does. If

(a2 - 1I)f A( C)

2dPA/d p -a - 1)dPf/dgp + +.. . 2a. dPa/d p

- (a2 - 1)dPf/dtp + *. + 2af d'(2ia/c + A)/d P

by (17), so that

[dk-IA/d k-i - 1 -k-i1 0 + o1 2

and d A/d~p  is continuous for p C k - 2 and also, for p - k - 1 except at x., and

has absolutely integrable skirts for p I k. These properties support the stationary-phase

evaluation [Jones 1966] as 9 * 0 of

-2iFt/c
a+ - J A(EE)e /d

to the extent of

a+ ,-ic/2)k dk'lA/dgk-l] + o( k )

and Irl- Ia+.
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